33P by xguru 2023-05-02 | favorite | 댓글 4개
  • 작은(Little) 모바일 기기의 화면에서 읽기 좋게 편집된 François Fleure 교수의 딥러닝 기초 서적

I. Foundations

  1. Machine Learning
    1.1 Learning from data
    1.2 Basis function regression
    1.3 Under and over-fitting
    1.4 Categories of models
  2. Efficient Computation
    2.1 GPUs, TPUs, and batches
    2.2 Tensors
  3. Training
    3.1 Losses
    3.2 Autoregressive models
    3.3 Gradient descent
    3.4 Backpropagation
    3.5 Training protocols
    3.6 Training data

II. Deep Models

  1. Model Components
    4.1 The notion of layer
    4.2 Linear layers
    4.3 Activation functions
    4.4 Pooling
    4.5 Dropout
    4.6 Normalizing layers
    4.7 Skip connections
    4.8 Attention layers
    4.9 Token embedding
    4.10 Positional encoding
  2. Architectures
    5.1 Multi-Layer Perceptrons
    5.2 Convolutional networks
    5.3 Attention models

III. Applications

  1. Prediction
    6.1 Image denoising
    6.2 Image classification
    6.3 Object detection
    6.4 Semantic segmentation
    6.5 Speech recognition
    6.6 Text-image representations
  2. Synthesis
    7.1 Text generation
    7.2 Image generation

와드가 늘어만 갑니다. ㅋㅋ

나이가 나이인지라 노안 온 지 좀 됐는데, 일단 글씨가 크니 참 좋네요 ^^

좋은 자료 감사합니다.