36P by xguru 4일전 | favorite | 댓글과 토론
  • Chip Huyen이 "AI Engineering" 책을 쓰면서 참고했던 1200개 이상의 링크와 1000개 이상의 AI Github Repo중에서 가장 도움 되는 것들만을 추린 것
  • 책의 각 챕터별로 연관된 중요 링크와 간단한 요약이 포함되어 있음

목차

  • ML Theory Fundamentals
  • Chapter 1. Planning Applications with Foundation Models
  • Chapter 2. Understanding Foundation Models
    • Training large models
    • Sampling
    • Context length and context efficiency
  • Chapters 3 + 4. Evaluation Methodology
  • Chapter 5. Prompt Engineering
    • Prompt engineering guides
    • Defensive prompt engineering
  • Chapter 6. RAG and Agents
    • RAG
    • Agents
  • Chapter 7. Finetuning
  • Chapter 8. Dataset Engineering
    • Public datasets
  • Chapter 9. Inference Optimization
  • Chapter 10. AI Engineering Architecture and User Feedback
  • Bonus: Organization engineering blogs